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ABSTRACT

In this paper, we explore the onboard processing capabilities
of an optical Earth observation instrument operating under
the principles of compressed sensing, currently under pre-
liminary study. In particular, we focus on two main aspects
for onboard operations: i) how to process measurements in
a computationally-efficient way to obtain previews of the re-
constructed image that can be easily used by downstream in-
ference algorithms; ii) the possibility of having simultaneous
compression and encryption by proper management of the
pseudorandom patterns used for the sensing matrix and mea-
surements.

Index Terms— Compressed sensing, onboard process-
ing.

1. INTRODUCTION

Since its introduction more than a decade ago, compressive
sensing (CS) has established itself as a radically different
imaging paradigm that combines compression and sensing.
CS relies on the hypothesis that real images have a sparse na-
ture, i.e., they can be compactly represented with few nonzero
coefficients in some transform domain, and this allows to
sample them at rates lower than what the Nyquist criterion
would dictate. The single-pixel camera [1] has demonstrated
the idea that imaging hardware exploiting CS principles may
require much fewer detectors than conventional designs. This
has recently raised interest for the development of a novel
generation of payloads for Earth observation missions [2].
Key to the CS theory is the acquisition of measurements of
the light field obtained via spatial light modulation (SLM)
with pseudorandom masks. Programmable micromirror de-
vices are typically used to implement this behavior by driving
each micromirror by means of the corresponding value of the
pseudorandom mask.

Measurements are then used to estimate the imaged scene
by means of a non-linear reconstruction process. Early recon-
struction methods relied on solving optimization problems,
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typically minimizing the ¢; norm of the transform coeffi-
cients of the reconstructed image [3], or the total variation
norm [4], or, alternatively, using greedy techniques such as
Orthogonal Matching Pursuit [5]. A common issue with
those early techniques was the need to define a handcrafted
prior about the image to be reconstructed. For instance, total
variation minimization implicitly assumes that the image is
well-described by a spatially piecewise-smooth signal. Such
handcrafted prior have limited the performance of recon-
struction algorithms due to their simplistic modelization of
the complexity of real images. More recently, deep learning
techniques [6] have been used for compressive sensing re-
construction, significantly outperforming optimization-based
techniques thanks to the more sophisticated priors that can be
learned by neural networks in a data-driven fashion.

Nevertheless, the reconstruction process remains a com-
putationally expensive operation. In the context of an Earth
observation mission, the satellite would directly acquire com-
pressive measurements by means of a suitable optical instru-
ment and then transmit them to a ground station for recon-
struction. However, there is a growing need in current and fu-
ture missions for onboard processing capabilities. In fact, the
total latency of the acquisition-transmission-reconstruction
pipeline can be in the order of hours to days depending on
many design factors. This hampers a whole range of time-
sensitive applications such as monitoring for environmental
disasters, surveillance and many more, which call for the
rapid solution of inference problems directly onboard the
satellite. This is not trivial to achieve in a design employing
compressive sensing because only measurements rather than
image data are available to the satellite.

In this paper, we explore the onboard processing ca-
pabilities of a compressive Earth observation instrument
currently under preliminary study. In particular, we focus
on two main aspects: i) how to process measurements in a
computationally-efficient way to obtain previews of the re-
constructed image to be easily used by downstream inference
algorithms for some problems of interest; ii) the possibil-
ity of having simultaneous compression and encryption by
proper management of the pseudorandom mask patterns and
measurements.
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2. PROPOSED METHOD

In this section, we are presenting the two main operations of
interest to be performed onboard, namely fast reconstruction
methods, and simultaneous sensing and encryption.

2.1. Fast Onboard Reconstruction

CS reconstruction is typically driven by highly non-linear
methods, ranging from optimization-based techniques to
deep learning. Such methods are needed in order to exploit
the most sophisticated image priors for the regularization of
the inverse reconstruction problem. However, their computa-
tional complexity is generally high. While some progress has
been made in recent years, thanks to the shift from iterative
optimization methods to neural networks, which may only
require one single forward pass, the amount of floating point
operations required is still too large to suit low-complexity
onboard implementations. At the same time, providing an
estimate of the reconstructed image directly onboard would
be beneficial to address a number of inference problems. As a
few examples, problems of interest can range from the detec-
tion of fires, ships, extreme atmospheric events, etc. In fact,
it is desirable to reuse highly optimized and validated algo-
rithms for such problems, but this poses the requirement of
producing an image as input to the inference method, rather
than compressive measurements.

For these reasons, we study a fast method to generate
“previews”, i.e. coarse estimates of the reconstructed image,
directly onboard. This is done via the use of an optimized
linear reconstruction operation. This operator acts directly on
the measurements vector to recover an estimate of the image.
Instead of relying on the simple pseudoinverse of the sensing
matrix, which would minimize the least squares criterion in
the measurements domain, we seek to optimize the linear re-
construction operator in a data-driven fashion so that it can
learn the typical autocorrelation pattern of the class of images
of interest. In particular, the linear reconstruction operator Q
is computed as:

Q =arg mcianme,y:‘ix[”U(QY) - x|[3], (D

being x a vectorized image sampled from the training dataset,
D and U a fixed upsampling operation (e.g., bilinear interpo-
lation), while y and ® respectively denote the measurements
vector and the sensing matrix. The fast preview is then gener-
ated from the measurements as

x = Qy. 2

It is interesting to notice that we can further reduce the
computational complexity of this operation by targeting a
lower resolution than the one of the original x that has gener-
ated the measurements, thus reducing the number of rows of
matrix Q, at the cost of a degraded quality of image x.

2.2. Onboard Encryption

Let us now discuss how the CS acquisition process as de-
scribed in Equations (1) and (2) can effectively be seen as a
symmetric-key encryption system. Specifically, given a vec-
torized image x and a sensing matrix ® such that y = &x,
where y denotes the measurements vector, it is possible to
achieve secrecy by randomizing the matrix ®, assuming it
is kept secret and known only to the hardware used for the
CS acquisition. In such a fashion, the image reconstruc-
tion can be seen as the process of encrypting a payload x
by means of an encryption key ® to obtain the encrypted
message y. In the proposed framework, we employ binary
sensing matrices generated independently and changed for
each different CS acquisition. In particular, we employ very
efficient,cryptographically-secure pseudo-random generators
to generate the binary entries for the sensing matrices. As
demonstrated in [7] and further illustrated in Section 4, de-
spite the fact that random binary sensing matrices do not offer
perfect secrecy, they nonetheless ensure that, when the size of
® grows, the advantage of a hypothetical attacker in attacking
the proposed system compared to a theoretically secure one
is negligible. Hence, practical security is achieved.

3. EXPERIMENTAL RESULTS

3.1. Onboard reconstruction

We investigate the performance of the proposed onboard re-
construction method by comparing the reconstruction error
achieved by the fast preview method and that of a full recon-
struction method, namely the ISTA-Net neural network. For
this experiment, we used a subset of the DFC2020 dataset
[8] composed of Sentinel 2 multispectral images. A train-
ing partition has been used to optimize the linear reconstruc-
tion operator and to train ISTA-Net, while a disjoint test par-
tition is used for numerical tests. The CS acquisition process
uses binary random matrices with +1 entries with a block
size of 32 x 32 pixels. We study three compression ratios,
i.e., the number of measurements acquired for each block,
namely 75%,50%,25% (768,512,256 measurements, respec-
tively). Table 1 shows the root mean square error of the test
images generated by the fast preview method and the full re-
construction by means of the ISTA-Net neural network [6]
for various system design parameters. On the other hand, Ta-
ble 2 shows the computational complexity of the methods,
measured in FLOPs. It can be noticed that the fast preview
is an order of magnitudes less expensive than the full recon-
struction, and could reasonably be implemented on dedicated
hardware onboard. At the same time, the degradation in qual-
ity with respect to ISTA-Net is not too severe and enables the
solution of inference problems. Fig. 1 shows a visual com-
parison of the reconstructions.
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Table 1. Quality of Fast Preview methods - Root Mean Squared Error

Compression ratio

25% 50% 75%
Full reconstruction 66.85 43,56 26091
Full-resolution preview 79.01 51.33 30.47
Half-resolution preview 8430 69.69 64.61
Quarter-resolution preview 104.53 100.96 100.09

Table 2. Complexity of Fast Preview methods - FLOPs

Compression ratio

25% 50% 75%
Full reconstruction ~4x10° ~4x10° ~4x10°
Full-resolution preview 52 x10° 1.0x10° 1.6 x 10°
Half-resolution preview 1.3 x10° 2.6x10° 3.9x10°
Quarter-resolution preview 3.3 x 10* 6.5 x 10* 9.8 x 10*

4. SECURITY EVALUATION

As explained in Section 2, we employ binary sensing matrices
generated independently and changed at each different CS ac-
quisition. A perfectly secure encryption system ensures that x
and y are statistically independent, i.e. p(x|y) = p(x), or, in
other words, the mutual information between x and y is zero
(I(x,y) = 0). Under the assumption that the sensing matri-
ces are generated independently and changed for each recon-
struction, as known from [7], perfect secrecy can be obtained
if two conditions are met: (i) the sensing matrix is generated
from Gaussian variables identically distributed and indepen-
dent of each other; (ii) the energy of the acquired signal is
constant. As said, our design employs random binary ma-
trices. Hence, theoretical security is not guaranteed. How-
ever, it is possible to precisely measure the advantage of an
attacker in attacking the proposed system compared to a per-
fectly secure one. In particular, we can show that the advan-
tage is negligible for growing block sizes in the CS acquisi-
tion process. For this measurement, we employ the concept
of O-distinguishability. Given two signals x; and x5, a ci-
phered signal y, and a decision function D(y), we measure
the capacity of D(y) to correctly understand whether y has
been obtained from x; or z2. Hence, given P, and P,, re-
spectively the probability of a correct decision and the prob-
ability of making a wrong one, z; and o are defined as 6-
distinguishable if, for every D(y):

P.— P, <0. )

The 6 parameter measures the advantage for the decision
function D(y) in picking the correct signal, i.e. effectively
decipher y, with respect to a random guess between the two
signals x1 and z5. Specifically, the probability that D(y)
picks the correct signal is P. < 1/2 + . The smaller the 0
value is, the smaller the advantage of the attacker becomes.
Straightforwardly, § = 0 in the case of a perfectly secure en-

cryption framework. Fig. 3 collects the §-distinguishability
results as a function of the macro-pixel size n. The curves
are obtained under the assumption that an independent CS
acquisition is done for contiguous macro-pixels. We evaluate
two scenarios in which the acquired signals are k-sparse in
the DCT-2D domain and in the original pixel domain, respec-
tively. The sparsity is set to 1/8 of the number of micro-pixels
in the block. Considering for example n = 32, corresponding
to a macro-pixel composed of 1024 micro-pixels, the prob-
ability for an attacker to decipher the encrypted signal y is
greater than the probability of randomly guessing the correct
payload 1 or 3 only by a negligible 10~°.

It is also worth noticing that our security analysis refers
to the single macro-pixel attack, while in practice the attacker
would try to infer the entire original image. For this reason,
the complexity of the proposed encryption framework is com-
parable to the complexity of a brute-force attack to obtain
the encryption key. As a matter of example, let us consider
a 128 x 128 micro-pixels image composed of 1024 macro-
pixels of size 4 x 4. In this scenario, the probability for an at-
tacker to infer the original image by observing the encrypted
measurements y can be estimated as (1/2 + 0.01)10%* =
3.5634e 3%, To put things in perspective, the probability
of brute-force guessing a 256-bit encryption key is equal to
1/2256 = 8.6362¢~"®. Hence, it would be more advanta-
geous for an attacker to try to infer the encryption key used
to generate the random binary sensing matrix, instead of de-
vising an attack based on the specific properties of the binary
matrices employed in our secure framework.

5. CONCLUSIONS

This paper presented a study of the onboard processing ca-
pabilities of an optical payload working under the principles
of compressed sensing. We showed how it is possible to ob-
tain high-quality reconstructions directly onboard with mod-
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Fig. 1. Reconstructions comparisons. Left to right: ground truth, ISTA-Net, full-resolution preview, half-resolution preview,
quarter-resolution preview.

Fig. 2. Examples of CS reconstructions when the sensing ma-
trix @, i.e. the encryption key, is not known.

est computational requirements and how the sensing process
can be leveraged to achieve simultaneous encryption.
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