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ABSTRACT

Compressive sensing has established itself as a novel imaging
paradigm. In this paper, we analyze the behavior of a a com-
pressive instrument based on spatial light modulators (SLM),
operating in the mid-infrared. We show that, contrary to
the well-studied visible and near-infrared wavelengths, mid-
infrared poses modeling challenges due to non-negligible
SLM diffraction effects. We show a way to model such effect
analytically and to account for them in the reconstruction
process, leading to improved reconstruction quality.

Index Terms— Compressed sensing, mid-infrared, diffrac-
tion.

1. INTRODUCTION

Compressive sensing (CS) [1] has established itself as a novel
approach to imaging, promising to overcome limitations of
traditional instrument designs. CS is grounded in the fact that
real images have a sparse nature, i.e., they can be compactly
represented in some domain, and this allows to sample them
at rates lower than what the Nyquist criterion would dictate.
Imaging hardware exploiting CS principles may require much
fewer detectors than conventional designs, as popularized by
the single-pixel camera [2]. This has raised interest for the
development of a novel generation of payloads for Earth ob-
servation missions [3]. Key to the CS theory is the acquisition
of measurements of the light field obtained via spatial light
modulation (SLM) with pseudorandom masks. Such modula-
tion is typically implemented by programmable micromirror
devices where the behavior of each micromirror follows the
corresponding value of the pseudorandom mask. Most of the
work on CS instruments has been focused on the visible and
near-infrared spectrum [4], while mid-infrared has received
relatively little attention [5].

In this paper, we analyze the problem of modeling the
behavior of an SLM-based CS instrument operating in the
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mid-infrared and how the reconstruction algorithm needs to
account for such model. In particular, we show that there
are non-negligible diffraction effects due to the SLM, re-
sulting in an efficiency term which is spatially-varying at
sub-micromirror level and dependent on the state of a set of
neighboring micromirrors (determined by the pseudorandom
mask). While this effect is negligible in visible and near-
infrared, it cannot be overlooked in the mid-infrared. In fact,
not accounting for this phenomenon in the reconstruction pro-
cess results in degraded image quality. We present a detailed
equivalent mathematical model of the acquisition process
which can be integrated in the reconstruction algorithm to
make it aware of the phenomenon. We show that this leads to
substantial improvements in the quality of the reconstructed
images.

2. SYSTEM MODEL AND RECONSTRUCTION
METHOD

2.1. SLM diffraction efficiency

In real optical systems, the finite size of the various optical el-
ements implies the presence of a Point Spread Function (PSF)
of finite size, even if there are no optical aberrations. The ex-
tent and distribution of the PSF is dependent on the charac-
teristics of the optical system and, in any case, proportional
to the wavelength. In the mid-infrared spectral region, the di-
mensions of the PSF are typically of the same order of mag-
nitude, or larger, than those of the elements of commercially-
avaiable, low cost SLMs. If the SLM consists of tilting micro-
mirrors, the phase delay introduced by the micro-mirrors on
the PSF wavefront should be considered.

In order to evaluate the diffractive optical efficiency, we
have applied the basic principles of Fourier optics and im-
plemented numerical simulations. In particular, took into ac-
count the main optical specifications of the CS instrumenta-
tion as described in [3, 6] and the configuration of the differ-
ent states (ON/OFF) of the micromirrors, determined by the
applied CS pseudorandom mask. In the simulations, and for
each micropixel, i.e., pixel at the resolution of the mage to be
reconstructed, constituted by 4× 4 micromirrors as in the CS
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demonstrator of [3, 6], we considered all possible combina-
tions of the state of the micropixels surrounding the one of
interest. For each of these configurations, the diffractive ef-
ficiency was evaluated on a regular grid of 12 × 12 positions
in order to take into account its variability and its dependance
from the scene. The simulation results demonstrated that the
diffractive efficiency varies up to 20% within the same mi-
cropixel and also depends on the specific configuration of the
different states (ON/OFF) of micromirrors.

This results leads to the necessity to consider this effect in
a numerical model of the acquisition process, so that it can be
properly accounted for during reconstruction from compres-
sive measurements.

2.2. Reconstruction algorithm

An equivalent model for SLM diffraction efficiency phe-
nomenon introduced in Sec. 2.1 can be developed. In this
equivalent description, the efficiency term is a scalar field
modulating the scene to be acquired. We consider the scene
at a higher spatial sampling rate, such as 12 times higher,
than the SLM micromirrors due to the aforementioned sub-
mirror non-uniformity. Being the efficiency field dependent
on the micromirrors state, this needs to be precomputed via
simulation for each pseudorandom mask to be used in the
acquisitions. In formulas, the i-the measurement value is
modeled as:

yi = Φivec
(
[[U⊙ ε(Φi)] ∗HPSF ∗BD]↓D

)
= Avec(U)

(1)

where Φi is the current SLM mask, U is the ideal scene under
acquisition, ε(Φi) is the SLM efficiency field as a function of
the SLM mask, HPSF is the optics point spread function, BD

is a box function of size D × D, ↓ D is 2D decimation by
a factor D in each direction, vec is a vectorization operation
and, finally, ⊙ and ∗ denote elementwise product and convo-
lution, respectively. Notice that the entire model is linear and
can be expressed with operator A. While this model needs
to involve a super-sampled scene to account for the effect of
SLM efficiency, we are only ultimately interested in estimat-
ing the image as it would be acquired by a detector placed on
the SLM plane. The ground truth image we seek to recon-
struct is therefore modeled as:

X = [U ∗HPSF ∗BD]↓D (2)

The reconstruction algorithm is based on total variation mini-
mization and it accounts for the full model in Eq. (1) to prop-
erly include the efficiency term. The scene reconstruction is
obtained as:

Û = argmin
U

∥y −Avec(U)∥22 + λTV(U). (3)

The reconstructed image we are interested in is then obtained
from the scene through the forward model in Eq. (2):

X̂ =
[
Û ∗HPSF ∗BD

]
↓D

. (4)

It should be noted that due to the super-sampling factor D,
solving Eq. (3) can be computationally expensive, especially
for high target resolutions. It is also worth noting that, while
for this preliminary investigation, we use total variation mini-
mization, a number of physics-informed deep learning meth-
ods [7] could be used for reconstruction. However, this is left
as future work since the large dynamic range and bimodal dis-
tributions typically encountered in real mid-infrared images
can pose challenges in neural network designs.

3. EXPERIMENTAL RESULTS

The experimental setup simulates mid-infrared scenes and the
acquisition process previously described in the previous sec-
tion. The CS acquisition process uses binary random matrices
with ±1 entries with a block size of 32× 32 pixels. We study
three compression ratios, i.e., the number of measurements
acquired for each block, namely 75%, 50%, 25% (768, 512,
256 measurements, respectively). In our setup, the super-
sampling factor for the scene is D = 21. Table 1 reports
some results in terms of relative error of the reconstructed
image as function of the compression ratio, i.e., the ratio be-
tween the number of CS measurements and the number of
image pixels. We first determine the performance under an
ideal scenario in which efficiencies are negligible (ε = 1) to
set the benchmark. For this benchmark, the variable of the op-
timization problem is directly the reconstructed image, so we
do not attempt to reconstruct the scene and then apply the for-
ward model. We then observe how the diffraction efficiency
degrades reconstruction quality when naive reconstruction is
performed, i.e., total variation minimization seeking to recon-
struct X without knowing the existence of the diffraction effi-
ciency model. We can however see how the efficiency-aware
reconstruction of Eq. (3) is capable of improving reconstruc-
tion performance with respect to naive reconstruction. It is
worth noting that at 25% compression ratio, efficiency-aware
reconstruction improves upon the benchmark that had mea-
surements without any diffraction efficiency. This can be ex-
plained by the more accurate modeling of the forward pro-
cess generating the image with extra terms such as the op-
tical PSF. However, we can also notice a performance floor
due to diffraction, whereby increasing the number of mea-
surements does not significantly improve performance. Fi-
nally, Fig. 1 shows a qualitative comparison of the recon-
struction produced without correctly modeling diffraction ef-
ficiency and the efficiency-aware method.
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Table 1. Reconstruction relative error
Compression ratio

25% 50% 75%
Benchmark (efficiency=1) 10.75% 2.31% 1.54%
Naive reconstruction 11.72% 9.45% 8.76%
Efficiency-aware reconstruction 6.97% 6.65% 6.21%

Fig. 1. Comparison between naive reconstruction without modeling SLM diffraction efficiency and efficiency-aware recon-
struction. Left to right: ground truth, naive reconstruction, efficiency-aware reconstruction. Log scale.

4. CONCLUSIONS

This paper presented an investigation of a compressive in-
strument based on SLMs operating in the less-studied mid-
infrared. We showed the importance of carefully modeling
diffraction effects in order to improve reconstruction quality.
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rike A Dauderstädt, et al., “Compressive sensing instru-
mental concepts for space applications,” in Unconven-
tional Optical Imaging III. SPIE, 2022, vol. 12136, pp.
66–72.

[7] Ulugbek S Kamilov, Charles A Bouman, Gregery T Buz-
zard, and Brendt Wohlberg, “Plug-and-play methods for
integrating physical and learned models in computational
imaging: Theory, algorithms, and applications,” IEEE
Signal Processing Magazine, vol. 40, no. 1, pp. 85–97,
2023.

4465


